Videos Resolviendo Integral definida e indifinida
Resolviendo Integral Definida
Resolviendo Integrales básicas
Propiedades de la integral definida
Se enuncian algunas propiedades y teoremas básicos de las integrales definidas que ayudarán a evaluarlas con más facilidad.
1) donde c es una constante
2) Si f y g son integrables en [a, b] y c es una constante, entonces las siguientes propiedades son verdaderas:
(se pueden generalizar para más de dos funciones)
3) Si x está definida para x = a entonces = 0
4) Si f es integrable en [a, b] entonces
5) Propiedad de aditividad del intervalo: si f es integrable en los dos intervalos cerrados definidos por a, b y c entonces |
Integral definida
Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x = a y x = b.
La integral definida se representa por .
∫ es el signo de integración.
a límite inferior de la integración.
b límite superior de la integración.
f(x) es el integrando o función a integrar.
dx es diferencial de x, e indica cuál es la variable de la función que se integra.
Propiedades de la integral definida
1. El valor de la integral definida cambia de signo si se permutan los límites de integración.
2. Si los límites que integración coinciden, la integral definida vale cero.
3. Si c es un punto interior del intervalo [a, b], la integral definida se descompone como una suma de dos integrales extendidas a los intervalos [a, c] y [c, b].
4. La integral definida de una suma de funciones es igual a la suma de integrales·
5. La integral del producto de una constante por una función es igual a la constante por la integral de la función.
Función integral
Sea f(t) una función continua en el intervalo [a, b]. A partir de esta función se define la función integral:
que depende del límite superior de integración.
Para evitar confusiones cuando se hace referencia a la variable de f, se la llama t, pero si la referencia es a la variable de F, se la llama x.
Geométricamente la función integral, F(x), representa el área del recinto limitado por la curva y = f(t), el eje de abscisas y las rectas t = a y t = x.
A la función integral, F(x), también se le llama función de áreas de f en el intervalo [a, b].
Reglas de Derivación
Derivada de una función constante
En resumen:
“La derivada de una función constante es cero”
Ejemplos:
a) Si
b) Si
c) Si
d) Si
e) Si
Derivada de una potencia
La derivada de una potencia o función potencial, es igual al exponente por la base elevada al exponente menos uno y por la derivada de la base.
Si la base es la función identidad, la derivada es igual al exponente por la base elevada al exponente menos uno.
f(x) = xk f'(x)= k · xk−1
Ejemplos
Derivada de un múltiplo constante
Regla de la suma y diferencia
La derivada de una suma de dos funciones es igual a la suma de las derivadas de dichas funciones.
Esta regla se extiende a cualquier número de sumando, ya sean positivos o negativos.
Ejemplos
Derivada de seno y coseno
La derivada del seno de una función es igual al cosenode la función por la derivada de la función.
Ejemplos
La derivada del coseno de una función es igual a menos el seno de la función por la derivada de la función.
Ejemplos
Derivada del Producto
La derivada del producto de dos funciones es igual al primer factor por la derivada del segundo más el segundo factor por la derivada del primero.
Derivada de una constante por una función
La derivada del producto de una constante por una función es
igual al producto de la constante por la derivada de la función.
Derivada del Cociente
La derivada del cociente de dos funciones es igual a la derivada del numerador por el denominador menos la derivada del denominador por el numerador, divididas por el cuadrado del denominador.
Derivada de una constante partida por una función
Ejemplos
Funciones Trigonométricas
Regla de la cadena
En cálculo, la regla de la cadena es una fórmula para la derivada de la composición de dos funciones. Tiene aplicaciones en el cálculo algebraico de derivadas cuando existe composición de funciones.
En términos intuitivos, si una variable y, depende de una segunda variable u, que a la vez depende de una tercera variable x; entonces, la razón de cambio de y con respecto a x puede ser calculada con el producto de la razón de cambio de y con respecto a u multiplicado por la razón de cambio de u con respecto a x.
Descripción algebraica
En términos algebraicos, la regla de la cadena (para funciones de una variable) afirma que si es diferenciable en y es una función diferenciable en , entonces la función compuesta es diferenciable en y
Notación de Leibniz
Alternativamente, en la notación de Leibniz, la regla de la cadena puede expresarse como:
donde indica que g depende de f como si ésta fuera una variable.
Ejemplo:
1.
2.
3.
Suscribirse a:
Entradas (Atom)
0 comentarios: